
1

Visible Surface Detection
Methods

1
2

3

4

5

1

2
3

4

1

2

3

4

5

Werner Purgathofer / Computergraphik 1 1

identifying visible parts of a scene
(also hidden-surface elimination)
type of algorithm depends on:

complexity of scene
type of objects
available equipment
static or animated displays

object-space methods
objects compared to each other

image space methods
point by point at each pixel location

often sorting and coherence used

Visible-Surface Detection

Werner Purgathofer / Computergraphik 1 2

the following algorithms are examples for
different classes of methods

back-face detection
depth buffer method
scan-line method
depth-sorting method
area-subdivision method
octree methods
ray-casting method

Visible-Surface Detection Methods

Werner Purgathofer / Computergraphik 1 3

surfaces (polygons) with a surface normal
pointing away from the eye cannot be visible
(back faces)

⇒ eliminate them before visibility algorithm !

⇒

viewing
direction

can be eliminated:

Back-Face Detection (1)

Werner Purgathofer / Computergraphik 1 4

eliminating back faces of closed polyhedra
view point (x,y,z) “inside” a polygon surface if

or polygon with normal N=(A, B, C) is a back
face if

Back-Face Detection (2)

0>⋅NVview

Ax + By + Cz + D < 0

N = (A, B, C)

Vview

Werner Purgathofer / Computergraphik 1 5

object description in viewing coordinates ⇒
Vview=(0,0,Vz)

sufficient condition: if C ≤ 0 then back face

CVNVview z=⋅

Back-Face Detection (3)

N = (A, B, C)

Vviewxv

yv
zv

2

Werner Purgathofer / Computergraphik 1 6

complete visibility test for non-overlapping
convex polyhedra

preprocessing step for other objects:
about 50% of surfaces eliminated

face partially hidden
by other faces

Back-Face Detection (4)

Werner Purgathofer / Computergraphik 1 7

z-buffer method
image-space method
hardware implementation
no sorting!

Depth-Buffer Method (1)

Werner Purgathofer / Computergraphik 1 8

two buffers
depth buffer (distance information)
refresh buffer (intensity information)

size corresponds to screen resolution
(for every pixel: r, g, b, z)

draw something =
• compare z with z in buffer
• if z closer to viewer
• then draw and update z in buffer
• else nothing!

Depth-Buffer Method (2)

Werner Purgathofer / Computergraphik 1 9

polygons with
corresponding
z-values

image

depth-
buffer

back-
ground

- infinity

3 3
3 3

3 3
3 3

8 7
7 6

8 7
7 6 3

3 3

6 5
6 5

4
4

7 66
6 5 4

8 7
3
3

Depth-Buffer Algorithm Example

Werner Purgathofer / Computergraphik 1 10

for all (x,y)
depthBuff(x,y) = 1.0
frameBuff(x,y) = backgndColor

for each polygon P
for each position (x,y) on polygon P
calculate depth z
if z < depthBuff(x,y) then
depthBuff(x,y) = z
frameBuff(x,y) = surfColor(x,y)

− ∞

>

Depth-Buffer Algorithm

Werner Purgathofer / Computergraphik 1 11

depth at (x,y):

depth at (x+1,y):

depth at (x,y-1):

z =
−Ax−By−D

C

z’ =
−A(x+1)−By−D

C = z − C
A

z” =
−Ax−B(y−1)−D

C = z + C
B

constants !

Depth-Buffer: Incremental z-Values

3

Werner Purgathofer / Computergraphik 1 12

determine y-coordinate extents of polygon P

Depth-Buffer: y-Coordinate Intervals

Werner Purgathofer / Computergraphik 1 13

z =
−Ax−By−D

C

z’ =
−A(x−1/m)−B(y−1)−D

C

= z + C
A/m + B

x’ = x − 1/m
y’ = y − 1 ⇒

constant !

Depth-Buffer: Values down an Edge

Werner Purgathofer / Computergraphik 1 14

image-space method
extension of scan-line algorithm for
polygon filling

Scan-Line Method

Werner Purgathofer / Computergraphik 1 15

edge table (all edges, y-sorted)
coordinate endpoints
inverse slope
pointers into polygon table

polygon table (all polygons)
coefficients of plane equation
intensity information
(pointers into edge table)

Scan-Line M.: Edge & Polygon Tables

Werner Purgathofer / Computergraphik 1 16

active edge list (all edges crossing
current scanline, x-sorted, flag)

Scan-Line Method: Active Edge List

Werner Purgathofer / Computergraphik 1 17

1
2

3

4

5

1

2
3

4

1

2
3

4

5

Edge T. 2,3,1,5,1,1,2,2,5,4,3,3,4,4 Poly.T. , ,
act.edges / act.poly.
3,2

1,5,2,1,3,1 , ,

2,2,5,3,1,5 , ,

3,3,1,5 ,

3,1

Scan-Line Method Example

4

Werner Purgathofer / Computergraphik 1 18

coherence between adjacent scan lines
incremental calculations
active edge list very similar
(easy sorting, avoid depth calculations)

intersecting or cyclically overlapping surfaces!

Scan-Line Method Details

Werner Purgathofer / Computergraphik 1 19

surfaces sorted in order of decreasing depth
(viewing in −z-direction)

“approximate”-sorting using smallest
z-value (greatest depth)
fine-tuning to get correct depth order

surfaces scan converted in order
sorting both in image and object space
scan conversion in image space
also called “painter’s algorithm”

Depth-Sorting Method: Overview

Werner Purgathofer / Computergraphik 1 20

surface S with greatest depth is
compared to all other surfaces S’

no depth overlap → ordering correct
depth overlap →
do further tests in
increasing order
of complexity

viewing
direction

Depth-Sorting Method: Sorting (1)

zmin

zmax

z´min

z´max

S

S´

xvzv

2 surfaces with no
depth overlap

Werner Purgathofer / Computergraphik 1 21

ordering correct if
bounding rectangles in xy-plane do not
overlap
check x-,y-direction separately

2 surfaces with depth
overlap but no overlap

in the x-direction

viewing
direction

Depth-Sorting Method: Sorting (2)

xmin xmax x´min x´max

S

S´

xvzv

Werner Purgathofer / Computergraphik 1 22

ordering correct if
S completely behind S’
substitute vertices of S into equation of S’

viewing
directionS is completely

behind (“inside”)
the overlapping S’

Depth-Sorting Method: Sorting (3)

xvzv

S´

S

Werner Purgathofer / Computergraphik 1 23

Depth-Sorting Method: Sorting (4)

xvzv

viewing
direction

S´

S

S is not completely
behind (“inside”) the

overlapping S’

overlapping S’ is
completely in front

(“outside”) of S, but S
is not completely

behind S’

ordering correct if
S’ completely in front of S
substitute vertices of S’ into equation of S

5

Werner Purgathofer / Computergraphik 1 24

ordering correct if
projections of S,S’ in xy-plane don’t overlap

surfaces with overlapping bounding rectangles

Depth-Sorting Method: Sorting (5)

Werner Purgathofer / Computergraphik 1 25

viewing
direction

S
S´

xvzv

S”

S
S´

xvzv

all five tests fail ⇒
ordering probably wrong
interchange surfaces S, S’
repeat process for reordered surfaces

sorted surface list: S, S’, S”
should be reordered: S’, S”, S

surface S has greater
depth but obscures S’

Depth-Sorting Method: Sorting (6)

Werner Purgathofer / Computergraphik 1 26

avoiding infinite loops due to cyclic overlap
reordered surfaces S’ are flagged
if S’ would have to be reordered again ⇒

divide S’ into two parts

Depth-Sorting: Special Cases

Werner Purgathofer / Computergraphik 1 27

image-space method
area coherence exploited
viewing area subdivided until visibility
decision very easy

Area-Subdivision Method (1)

Werner Purgathofer / Computergraphik 1 28

relationship polygon ⇔ rectangular view area

only these four possibilities

inside
surface

outside
surface

surrounding
surface

overlapping
surface

Area-Subdivision Method (2)

Werner Purgathofer / Computergraphik 1 29

all surfaces are outside of viewing area
checking bounding rectangles

only one inside, overlapping, or
surrounding surface is in the area

bounding rectangles for initial check
one surrounding surface obscures all other
surfaces within the viewing area

minimum depth ordering

three easy visibility decisions
Area-Subdivision Method (3)

6

Werner Purgathofer / Computergraphik 1 30

a surrounding obscuring surface
surfaces ordered according to minimum depth
maximum depth of surrounding surface
closest to view plane?
test is conservative

Area-Subdivision Method (4)

viewing
direction

xvzv

surrounding
surface

area

zmax

zmin

Werner Purgathofer / Computergraphik 1 31

if all three tests fail ⇒ do subdivision
subdivide area into four equal subareas
outside and surrounding surfaces will remain
in this status for all subareas
some inside and overlapping surfaces will be
eliminated

no further subdivision possible (pixel
resolution reached)

sort surfaces and take intensity of nearest
surface

Area-Subdivision Method (5)

Werner Purgathofer / Computergraphik 1 32

1 2
3 4

finished

Area-Subdivision Method Example

Werner Purgathofer / Computergraphik 1 33

recursive traversal of octree
traversal order depends on processing
direction

front-to-back:
pixel(x,y) written once
completely obscured
nodes are not traversed

back-to-front:
painter’s algorithm

Octree Methods

viewing
direction

Werner Purgathofer / Computergraphik 1 34

recursive traversal of octree
traversal order depends on processing
direction

front-to-back:
pixel(x,y) written once
completely obscured
nodes are not traversed

back-to-front:
painter’s algorithm

Octree Methods

viewing
direction

Werner Purgathofer / Computergraphik 1 35

line-of-sight of each pixel is intersected with
all surfaces
take closest intersected surface

Ray-Casting Method (1)

closest
intersection

point
viewing
direction

7

Werner Purgathofer / Computergraphik 1 36

based on geometric optics, tracing paths of
light rays
backward tracing of light rays
suitable for complex, curved surfaces
special case of ray-tracing algorithms
efficient ray-surface intersection techniques
necessary

intersection point
normal vector

Ray-Casting Method (2)

